Package: CHFF (via r-universe)

August 31, 2024

Title Closest History Flow Field Forecasting for Bivariate Time Series

Type Package

Version 0.1.0

Author Patrick Fleming
Maintainer Kyle A. Caudle <kyle.caudle@sdsmt.edu></kyle.caudle@sdsmt.edu>
Description The software matches the current history to the closest history in a time series to build a forecast.
License GPL-3
LazyData TRUE
NeedsCompilation no
Date/Publication 2016-05-26 23:10:00
Repository https://kylecaudle.r-universe.dev
RemoteUrl https://github.com/cran/CHFF
RemoteRef HEAD
RemoteSha 767a44d70215c7fabc1fa88cd48d479a5c156088
Contents
CHFF
historyslopes
standarddistance
tsdata
Index 6

CHFF

CHFF

Closest History Flow Field Forecasting for Bivariate Time Series

Description

Matches the current history with the "closest" history for a given time series. A forecast will be based on what happened after the "closest" history was observed.

Usage

```
CHFF(data,num,step)
```

Arguments

1	an:		•
data	Time	series	data

num Number of forecasts produced

step Step size (or lag) in past slopes used in the history structure

Value

Prints the (x,y) forecast values and provides a plot

Author(s)

Patrick Fleming

References

Caudle, KA, Fleming, PS, Frey, MR and Brubaker, N. "Next Generation of Flow Field Forecasting", Proceedings of the Joint Statistical Meetings of the American Statistical Association, Seattle, WA., 8 August-13 August (2015).

Frey, Michael R., and Kyle A. Caudle. "Flow field forecasting for univariate time series." Statistical Analysis and Data Mining (2013).

Examples

```
data(tsdata) # Load time series data int R
CHFF(tsdata,10,3)
```

historyslopes 3

oryslopes History of Slopes
ropes History of Stopes

Description

Extracts the history space for a given time series

Usage

```
historyslopes(x,y,step,ave)
```

Arguments

x	x values for the time series
У	y values for the time series
step	The lags in past slopes used in the given history
ave	Then number of time step the slope are averaged over. We recomend 1 or step which is the lags in the slopes.

Value

Returns the history space in matrix form 16X(datalength-7*step), with the most recent history at the bottom.

Author(s)

Patrick Fleming

References

Caudle, KA, Fleming, PS, Frey, MR and Brubaker, N. "Next Generation of Flow Field Forecasting", Proceedings of the Joint Statistical Meetings of the American Statistical Association, Seattle, WA., 8 August-13 August (2015).

Frey, Michael R., and Kyle A. Caudle. "Flow field forecasting for univariate time series." Statistical Analysis and Data Mining (2013).

Examples

```
data(tsdata) # Load time series data int R
CHFF(tsdata,10,3)
```

4 standarddistance

	~
standarddistance	Calculates Standard Distance Score
Standar dui Stante	Calculates Statiania Distance Score

Description

For each history we calculate the standard distance score between the current history and all histories

Usage

```
standarddistance(char, History, hlength)
```

Arguments

char The number iof characteristics to consider when searching for the "closest" his-

tory. 16 is the complete set of possible characters, 14 leaves off the x and y

posistions on uses 7 x slopes and 7 y slopes only.

History The history space

hlength The length of the history space.

Value

Returns the winning Score, the structures used in the winning score, and the winning history

Author(s)

Patrick Fleming

References

Caudle, KA, Fleming, PS, Frey, MR and Brubaker, N. "Next Generation of Flow Field Forecasting", Proceedings of the Joint Statistical Meetings of the American Statistical Association, Seattle, WA., 8 August-13 August (2015).

Frey, Michael R., and Kyle A. Caudle. "Flow field forecasting for univariate time series." Statistical Analysis and Data Mining (2013).

Examples

```
data(tsdata) # Load time series data int R
CHFF(tsdata,10,3)
```

tsdata 5

tsdata

Time Series Data for Testing

Description

A simulated time series data model generates trajectories in a two-dimensional space. Generated trajectories are composed of 20-observation cycles, each cycle with four quarter-ellipse segments of five observations.

Usage

data(tsdata)

Value

Provides user data to run as an example

Author(s)

Patrick Fleming

References

Caudle, KA, Fleming, PS, Frey, MR and Brubaker, N. "Next Generation of Flow Field Forecasting", Proceedings of the Joint Statistical Meetings of the American Statistical Association, Seattle, WA., 8 August-13 August (2015).

Frey, Michael R., and Kyle A. Caudle. "Flow field forecasting for univariate time series." Statistical Analysis and Data Mining (2013).

Examples

data(tsdata) # Load time series data int R

Index

```
* Forecasting
CHFF, 2
* Time Series
CHFF, 2
CHFF, 2
historyslopes, 3
standarddistance, 4
tsdata, 5
```