Package: LTAR 0.1.0

LTAR: Tensor Forecasting Functions

A set of tools for forecasting the next step in a multidimensional setting using tensors. In the examples, a forecast is made of sea surface temperatures of a geographic grid (i.e. lat/long). Each observation is a matrix, the entries in the matrix and the sea surface temperature at a particular lattitude/longitude. Cates, J., Hoover, R. C., Caudle, K., Kopp, R., & Ozdemir, C. (2021) "Transform-Based Tensor Auto Regression for Multilinear Time Series Forecasting" in 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA) (pp. 461-466), IEEE <doi:10.1109/ICMLA52953.2021.00078>.

Authors:Kyle Caudle [aut, cre], Randy Hoover [ctb], Jackson Cates [ctb]

LTAR_0.1.0.tar.gz
LTAR_0.1.0.zip(r-4.5)LTAR_0.1.0.zip(r-4.4)LTAR_0.1.0.zip(r-4.3)
LTAR_0.1.0.tgz(r-4.4-any)LTAR_0.1.0.tgz(r-4.3-any)
LTAR_0.1.0.tar.gz(r-4.5-noble)LTAR_0.1.0.tar.gz(r-4.4-noble)
LTAR_0.1.0.tgz(r-4.4-emscripten)LTAR_0.1.0.tgz(r-4.3-emscripten)
LTAR.pdf |LTAR.html
LTAR/json (API)

# Install 'LTAR' in R:
install.packages('LTAR', repos = c('https://kylecaudle.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • tensor - Sea Surface Temperatures

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 114 downloads 4 exports 21 dependencies

Last updated 1 years agofrom:7218520dd4. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 18 2024
R-4.5-winOKNov 18 2024
R-4.5-linuxOKNov 18 2024
R-4.4-winOKNov 18 2024
R-4.4-macOKNov 18 2024
R-4.3-winOKNov 18 2024
R-4.3-macOKNov 18 2024

Exports:errLTARLTARpredLtrans

Dependencies:gsignallatticelmtestMASSMatrixmatrixcalcnlmepngpracmarasterRcpprTensorrTensor2sandwichspstrucchangeterraurcavarswavethreshzoo